В 1929 г. Хаббл сообщил об открытии им фундамен­тальной закономерности. Он обнаружил, что линии спект­ров всех галактик, за исключением нескольких галактик из числа самых близких, смещены в красную сторону. Как и в случае смещения спектров звезд, объясняемых явлением Доплера, отношение изменения длины волны Δƛ  к самой длине волны ƛ одинаково для всех линий спектра данной галактики. Если объяснять это явление, как обычно, эффектом Доплера, то нужно сделать вывод, что все галактики, за исключением нескольких из числа самых близких, удаляются от нас, и скорость удаления υ  каждой галактики определяется из пропорции

υ / c = Δƛ / ƛ                          (1)

где с — скорость света.

Но этим еще не исчерпывалось открытие. Выяснилось, что чем в среднем слабее галактика, тем сильнее смеще­ны в красную сторону линии ее спектра, а так как сла­бый блеск галактики, вообще говоря, свидетельствует в пользу ее большей удаленности, то можно сделать вывод, что чем дальше находится галактика, тем сильнее смещен ее спектр в красную сторону.

Исследовав вопрос подробно, Хаббл установил, что от­ношение Δƛ / ƛ, определяемое по спектру галактики, про­порционально расстоянию до галактики, т. е. красное смещение в спектрах, галактик пропорционально расстоя­нию до галактик.

Сначала эта закономерность была установлена для ярких и, следовательно, сравнительно близких галактик. Но затем в 1936 и 1953 гг. Хаббл показал, что она спра­ведлива для всех галактик, включая самые слабые, в ре­зультате чего обнаруженная закономерность приобрела характер всеобщего закона. Этот закон, названный зако­ном красного смещения спектров галактик, а иногда называемый законом Хаббла, является одним из фундаментальнейших законов Вселенной, одним из основных законов природы.

Ввиду чрезвычайной важности закона красного сме­щения спектров галактик, покажем, каким способом Хаббл пришел к его установлению, но воспользуемся при этом более обширным материалом лучевых скоростей 806 га­лактик, который получили в 1956 г. Хьюмасон, Мейалл и Сендидж.

Предположим, что закон красного смещения спектров галактик справедлив и, следовательно, выполняется ра­венство

с*( Δƛ / ƛ)= H*r                         (2)

где с — скорость света, а H — некоторый коэффициент пропорциональности,   который в честь Хабла принято обозначать первой буквой его фамилии (Hubble). Тогда, подставляя в известное нам равенство

m=M+5lgr-5         (3)

вместо r его выражение из (2), получим

m = 5lg(c* Δƛ / ƛ) + M – 5 – 5 lg * H             (4)

   Последние два члена в равенстве— постоянные ве­личины. Если бы была еще одинаковой для всех галактик абсолютная звездная величина М, то, откладывая на оси

абсцисс   lg(c* Δƛ / ƛ),  а на оси ординат  m, находимые из наблюдений галактик, мы, если закон Хаббла выполня­ется, согласно (4) должны были бы получить точкирасполагающиеся строго вдоль некоторой прямой. На са­мом деле абсолютные звездные величины галактик разли­чаются между собой, и притом, как мы знаем, довольно сильно. Вследствие этого (если закон Хаббла выполняется), точки будут располагаться не строго вдоль прямой, а сгруппируются около нее с некоторым разбросом.

График, построенный Хьюмасоном, Мейаллом и Сендиджем, убеждает в справедливости закона Хаббла. Важно здесь также то, что наклон прямой, около которой разбросаны точки, получается как раз таким, каким он должен быть согласно коэффициенту 5, стоящему перед логарифмом в уравнении (4).

Чтобы добиться еще более убедительного результата, уменьшить разброс точек около прямой, Хьюмасон, Мей­алл и Сендидж воспользовались следующим приемом. В 18 скоплениях галактик они измерили красное смеще­ние спектров у первой, третьей, пятой и десятой по яр­кости галактики и определили средние значения lg(c* (Δƛ / ƛ)) и m для них. Можно полагать, что ярчайшие члены  скоплений не очень сильно отличаются от скопления к скоплению по абсолютной звездной величине. Кроме того, здесь взяты средние величины. Поэтому, если закон Хаб­бла верен, разброс точек должен сильно уменьшиться.

Как показывает рисунок, это в действительности и прои­зошло. Полученные точки с очень малым разбросом ло­жатся около прямой. Закон Хаббла выражается от­четливо.

Итак, закон подтвержден: для галактик выполняется условие (2).

Но можно ли утверждать, что красное смещение спек­тров галактик есть следствие эффекта Доплера, т. е. что оно вызывается удалением галактик? Если допустить, что это именно так, то из равенств (1) и (2) следует, что

υ=H*r                 (5)

и мы приходим к выводу, к которому астрономы за про­шедшие 45 лет уже привыкли, но который поражает воображение каждого, кто впервые его узнаёт: галактики удаляются со скоростями, пропорциональными их расстояниям! Если одна из них расположена в сто раз даль­ше, чем другая, то она и удаляется от нас в сто раз быстрее.

Хабл объяснял красное смещение спектров галактик эффектом Доплера, поэтому закон (5) также называют законом Хаббла. Нужно, одна­ко, понимать, что закон (2) является безусловно правиль­ным, он проверен наблюде­ниями, а закон (5) верен что смещение спектров вызывается эффектом Доплера, чего наблюдениями доказать нельзя. Можно лишь судить о большей или меньшей степени правдоподобности этого утверждения.

Если бы весь наблюдаемый мир образовался в результате грандиозного взрыва и галактики формировались из матери, разбросанной взрывом, то те из низ, которые зародились в частях материи, получивших в момент взрыва большую скорость, должны были бы к настоящему моменту улететь дальше, в полном согласии с законом Хаббла.

Принятие закона Хаббла в виде (5), утверждающем, что галактики имеют положительные скорости, пропорциональные их расстояниям, должны неизбежно приводить к выводу, что никогда в прошлом (как давно это зависит от коэффициента H) все галактики, или куски материи, из которых они сформировались, вылетели одновременно, но с разными скоростями из некоторого сравнительно малого объема.

Этот вывод имеет настолько большое значение для всех наших представлений о происхождении и строении Вселенной, что прежде чем с ним согласиться, необходи­мо проверить, нет ли других возможностей для объясне­ния красного смещения, кроме эффекта Доплера.

Было предложено несколько иных объяснений. Одно из них, получившее название гипотезы «старения кван­та», состоит в том, что фотоны, т. е. частицы света, при своем движении в пространстве теряют часть энергии, которая в них заключена. Утверждается, что таков закон движения фотона в пространстве. Энергия фотона про­порциональна частоте, т. е. обратно пропорциональна длине волны излучения. Поэтому, по мере того как фотон путе­шествует в пространстве, длина волны излучения стано­вится все больше и весь спектр далекого объекта оказы­вается смещенным в красную сторону, причём величина смещения будет пропорциональна

расстоянию. На малых расстояниях и даже на расстояниях больших (но не очень) эффект старения кванта еще настолько незначите­лен, что его нельзя обнаружить из наблюдений, поэтому он сказывается только в спектрах весьма отдаленных тел — других галактик.

Еще одно объяснение, предложенное вместо эффекта Доплера, состояло в конкретизации причины «старения кванта». Потеря энергии фотоном не есть просто закон его движения, а вызывается взаимодействием с другими фотонами излучения, заполняющими пространство Мета­галактики и движущимися по всевозможным направле­ниям. Чем больший путь проходит фотон, тем в среднем больше взаимодействий он испытывает, тем больше будет красное смещение спектра галактики.

Слабость всех гипотез, сводящихся к «старению кван­та» при движении света в пространстве, состоит в том, что они требуют отказа от закона сохранения энергии. Если «старение кванта» есть просто закон его движения, то энергия теряется, не передаваясь ничему, т. е. закон сохранения энергии нарушается. Если же фотон теряет часть энергии, передавая ее какой-то среде, другим фо­тонам, вообще каким-то частицам, то всякая такая пере­дача энергии должна быть связана с возможностью из­менения направления полета фотона. Фотоны, прошед­шие очень большой путь, должны заметно изменить на­правление своего движения в пространстве. Вследствие этого изображения далеких галактик должны быть раз­мытыми, и чем дальше галактика, тем степень размыто­сти ее изображения должна быть больше.

Но наблюдения показывают, что очертания далеких и очень далеких галактик столь же ясны и отчетливы, как и ближайших к нам звездных систем.

Поэтому гипотезы «старения кванта», серьезно об­суждавшиеся еще лет тридцать назад, в настоящее время почти не находят сторонников.

Только эффект Доплера может приводить к сильному красному смещению спектров галактик и сохранять при этом отчетливые изображения галактик на фотографиче­ских пластинках, такие, какие в действительности наблю­даются. Таким образом, хотя это нельзя считать строго доказанным, а просто ввиду отсутствия других удовлетво­рительных объяснений, разумно считать, что красное смещение спектров галактик действительно вызывается их удалением.

Значит, нужно принять и следствие из этого вывода, а именно, что в некоторый момент в прошлом все галак­тики, или куски материи, из которых образовались галак­тики, были одновременно выброшены по равным направ­лениям и с разными скоростями из маленького объема пространства. Этот фундаментальный космогонический вывод в тридцатые годы нашего века породил гипотезы, рассматривающие взрыв, давший начало галактикам, как сотворение мира в результате божественного акта.

С другой стороны, вывод об имевшем место, казалось бы, начальном моменте существования всей наблюдаемой Вселенной настораживал многих астрономов и вызывал у них недоверие к закону Хаббла. Но попытки игнориро­вать закон, основанный на точных наблюдениях, никогда не приводят к научному прогрессу. В наши дни ста­ло совершенно ясным, что предположение о некотором грандиозном процессе взрывного характера, давшем начало галактикам и сообщившим им различные ско­рости, является наблюдательным фактом, вполне со­гласующимся с материалистическими представлениями о Вселенной.

Взрывные процессы различного масштаба оказались весьма распространенными во Вселенной. Вспышки но­вых звезд, вспышки сверхновых звезд, грандиозный взрыв в ядре галактики NGC 3034 и другие явления, о которых мы будем писать ниже, свидетельствуют о су­ществовании, процессов взрывного характера, показыва­ют, что процессы такого рода — закономерность в эволю­ции Вселенной. Взрывной процесс, давший начало всем наблюдаемым галактикам, следует рассматривать в цепи этих явлений как самое грандиозное из них.

Предположим, что в результате взрыва, происшедшего 1,5 млн. лет назад, в ядре галактики NGC 3034, сформи­ровались звезды. Около одной из них образовалась пла­нетная система и развилась разумная жизнь. Точные научные исследования, которые выполнят разумные су­щества, приведут их к выводу, что планетная система, в которой они живут, и окружающие их звезды образо­вались одновременно в результате взрыва и выбросов из маленькой области внутри ядра галактики 1,5 млн. лет назад. Будет ли такой вывод научным? Разумеется. Тре­бует ли он признания сверхъестественной божественной силы? Нет, конечно. Разумным существам в галактике NGC 3034, как и нам, необходимо будет признать, что наблюдательные данные свидетельствуют о существова­нии и важной роли в космогонии еще неизученных про­цессов взрывного характера. Они, как и мы, должны считать первостепенной задачей изучение этих процессов, связанных с бурным переходом вещества из одного со­стояния в другое. То, что взрывные процессы проявля­ется в различной форме и имеют различные масштабы, должно способствовать изучению сути этих явлений.

Так как все обозреваемое пространство Вселенной заполнено галактиками и никаких иных тел, отклоняю­щихся от закона Хаббла, не наблюдается, то этот закон  можно трактовать как общее расширение наблюдаемой области Вселенной, расширение Метагалактики. Можно даже считать, что происходит равномерное и изотропное, т. е. одинаковое во всех точках и во всех направлениях, расширение пространства, влекущее удаление друг от друга тел, в нем находящихся.

Удаление галактик по всем направлениям от земного наблюдателя вовсе не означает, что Земля или, лучше сказать, наша Галактика занимает центральное положе­ние во Вселенной, в Метагалактике. Представьте себе сплошной резиновый шар, который мы каким-нибудь спо­собом равномерно растягиваем по всем направлениям. В какой бы точке этого шара ни находился наблюдатель, в центральной или любой иной, ему будет казаться, что все остальные точки шара от него удаляются, причём удаляются со скоростями, пропорциональными их рас­стояниям. Интересно, что если скорость удаления галак­тик не зависит от направления, то только закон пропорциональности скорости расстояниям не ведет к антропоцентризму — выводу о центральном положении человека во Вселенной. Если бы, например, все галактики, независимо от их расстояний, удалялись от Земли с одинаков вой скоростью, то, как легко себе это представить, положение нашей Галактики во Вселенной было бы исключи­тельным. Только при взгляде из этой точки происходило бы расширение по всем направлениям, и во всех направ­лениях скорость расширения была бы одинаковой. Для каждой из других точек пространства имелось бы направление, в котором расширение отсутствует, а в остальных направлениях скорость расширения была бы различной

Рассматривать удаление галактик как расширение пространства удобно еще вот почему. Галактики, являю­щиеся членами одного и того же скопления галактик, находятся почти на одинаковом расстоянии от нас, так как обычно размеры скопления малы в сравнении с такими расстояниями. Между тем лучевые скорости этих галактик обычно заметно отличаются друг от друга. От­личие намного больше того, которое следует из закона Хаббла, если бы одни галактики находились на ближней к нам, а другие на дальней от нас границах скопления; Это явление объясняется тем, что все скопление галактик удаляется от нас со скоростью, которая у него должна быть согласно закону Хаббла, но внутри скопления каж­дая галактика еще как-то движется по отношению к цен­тру инерции скопления. Поэтому общая скорость галак­тики складывается из двух скоростей — общей согласно закону Хаббла для данного расстояния, т. е. для места данного скопления, и индивидуальной скорости по отно­шению к скоплению, в котором галактика находится.

Индивидуальным движением обладает каждая галак­тика, а не только член скопления. Поэтому общую кар­тину движений галактик лучше всего представлять себе так: все пространство Метагалактики изотропно расширя­ется и увлекает с собой находящиеся в нем галактики, В то же время каждая галактика имеет еще индивиду­альное движение, направление которого может быть любое — и от нас, и к нам, и в любую другую сторону.

Именно благодаря индивидуальным движениям спектры некоторых из самых близких галактик смещены не в красную, а в фиолетовую сторону, т. е. эти галактики к нам приближаются. У близких галактик удаление, вызванное расширением пространства, мало вследствие сравнительной малости расстояния, и эта скорость вполне может быть перекрыта индивидуальной скоростью, если последняя направлена к нам. У далеких же галактик скорость удаления, вызываемая расширением простран­ства, настолько велика, что влияние индивидуальной скорости становится незаметным.

В списке Местной системы галактик  7 галактик имеют отрицательную лучевую скорость, т. е. приближаются к нам. Однако необходимо учесть, что лучевые скорости мы определяем из Солнечной системы, которая сама движется со скоростью около 220 км/с в нашей Галактике. Поэтому чтобы получить скорость дру­гих галактик по отношению к нашей Галактике, а имен­но это и представляет интерес в рассматриваемом вопро­се, необходимо в полученные лучевые скорости внести поправки за скорость Солнца в Галактике.

Если это сделать, то окажется, что лучевая скорость у всех членов Местной системы сохранит знак. В част­ности, у шести членов Местной системы лучевая скорость останется отрицательной, хотя и уменьшится по абсолют­ной величине. Так, туманность Андромеды (NGC 224) действительно приближается к нашей Галактике со ско­ростью 143 км/с, a NGC 185 со скоростью 180 км/с. Исследование лучевых скоростей близких галактик показало, что индивидуальные скорости галактик, распо­ложенных вне скоплений, составляют в среднем 200— 300 км/с, а у галактик — членов некоторых плотных скоплений они больше и равны 400—600 км/с.

Величины красных смещений спектров указывают на очень большие скорости слабых далеких галактик. На­пример, для одной слабой галактики измеренное Минков-ским на Паломарской обсерватории значение Δƛ / ƛ оказа­лось равным 0,46. Следовательно, если применить формулу (1), то скорость удаления галактики будет рав­на 0,46 с или 138 000 км/с. Однако для таких больших скоростей формула (1) неверна. Она приближенно выра­жает закон Доплера лишь в том случае, когда υ очень мала в сравнении с с. Точная формула закона Доплера дается теорией относительности и имеет вид

υ / c = ((( Δƛ / ƛ)+1)2-1)/( (( Δƛ / ƛ)+1)2+1)                    (6)

   В случае очень малых Δƛ / ƛ эта формула сводится к равенству (1), а при не очень малых Δƛ / ƛ различие между формулами (1) и  (6) существенно. Если, например,  смещение длины волны окажется равным самой длине волны (что не невозможно), то по формуле (1) получа­ется предельная в природе скорость υ = с, а по верной  формуле (6) υ = (3/5)  с.  Согласно формуле (6) какие бы большие смещения спектров не наблюдались, скорость удаления меньше скорости света. Для упомянутой выше  галактики, имеющей красное смещение спектра Δƛ / ƛ = 0,46, по формуле (6) находим правильное значение υ = 0,36 с или 108000 км/с.

Теперь нам осталось сделать последний и важнейший, шаг в познании закона Хаббла. Нужно определить значение коэффициента пропорциональности H, связывающего в формуле (5) скорость удаления галактик с расстояни­ями до них. Коэффициент H является одной из основных мировых констант — он характеризует скорость расшире­ния мирового пространства.

История определения этого коэффициента изложена в следующих двух постах: «Построение шкалы внегалактических расстояний» и «Пересмотр шкалы внегалактических расстояний» .

 

Т.А.Агекян «Звезды, Галактики, Метагалактики» 1981 год. Издание третье, переработаное и дополненое

Приглашаем Вас обсудить данную публикацию на нашем форуме о космосе.